

Propulsion

Mike Osborn
NRL
202-767-9168
mosborn@space.nrl.navy.mil

Top Level Functional Requirements

- Provide Thrust for Spacecraft Orbit Raising, Attitude Control, and Stationkeeping
- Provide Single Fault Tolerant Design
 - Thruster Failure
 - Valve Leakage
- 5 Year Mission Life
 - Design For Delivery by January 2002
 - Derived From Integrated Master Schedule
 - Design and Qualify for Worst Case Mission and Launch Environments With Margin
 - New or Re-Designed Systems Will Have Protoflight Testing
- Meet Launch Base Safety Requirements and Verification Process
 - EWR-127-1
- Support Science Mission Requirements
 - Minimize CG Migration
 - Plume Contamination
- Minimize Cost and Schedule Risk
 - Provide Most Flexible Design With Given Schedule and Budget

Propulsion Derived Requirements (1 of 3)

- Provide Delta V Thrust Through + Z Axis (Velocity Vector) for Orbital Maneuvers
 - Correct Delta 7425 Launch Vehicle Insertion Error
 - 1st/2nd Stage Pointing Error
 - 3rd Stage (STAR 48) Pointing and Impulse Errors
 - Correct Transfer Stage (STAR 30BP) Pointing and Impulse Errors
 - Total Impulse Error Requires Additional Impulse Capability
 - Pointing Error Produce Inclination Changes
 - Acceptability Above 28° Must Be Evaluated for No Correction
 - De-Orbit Transfer Stage Before Science Mission
 - De-Orbit From GEO Position for Orbital Debris Mitigation
- Provide Vehicle 3 Axis Attitude Control
 - Correct for Delta V Thrust Misalignment With CG
 - Nutation Control
 - Solid Rocket Motor Firing
 - Science Collection

Propulsion Derived Requirements (2 of 3)

- Provide Vehicle 3 Axis Attitude Control (Continued)
 - Precession Control (Backup for Solar Precession)
 - Solid Rocket Motor Firing
 - Science Collection
 - Spin Control (About Vehicle Z Axis-Roll)
 - Requires Pure Torque Couples
 - Spin Stabilize for Solid AKM Firing 40-100 RPM
 - Rotation Control for Science Mission
 - 1 Revolution Per 40 Minutes
- Provide Stationkeeping (Drag Make Up) Delta Velocity
 - No North-South Stationkeeping Requirement
 - Allows Inclination Drift
 - East-West Stationkeeping
 - 1 Degree Tolerance for GEO Orbital Position Allocation
 - Requirement May Be Removed via Orbit Optimization

Propulsion Derived Requirements (3 of 3)

- Mono-Propellant Hydrazine Propellant System
 - Moderate Mission Total Impulse Requirements
 - Blowdown Pressurization
- Positive Expulsion Tank Required for Precision CG Alignment During Expulsion
 - Science Mission Requirement
 - Eliminates Passive PMD Designs (i.e., Vanes, Sumps)
- Drop Off AKM Stage Due to Uncertainty in Post Burn Mass Properties
 - Science Mission Requirements for CG Knowledge & Alignment
- De-Orbit in Accordance With NASA Policy Directive (NPD) 8710.XX
 - GEO Is an Active Orbit Requiring Removal of Orbital Debris
 - 300 Km Above GEO Disposal Orbit
 - Applies to Solid Apogee Transfer Stage
 - Final Disposal of FAME Vehicle

FAME Propulsion Schematic

Current Baseline/Approach

- One Centrally Located Pressurized Monopropellant Hydrazine Tank
 - Contains a Propellant Management Device (PMD)
 - Blowdown Pressurization Ratio Dependent on Tank Selection and Propellant Load (Nominal 4:1)
- Eight 1.0 lb to 0.25 lb Thrusters (Beginning-of-Life vs. End-of-Life)
 - 4 +Z Thruster for Delta V
 - 4 ±Y Thrusters for Spin Control and Attitude Control
 - Series Thruster Valves (Leakage Protection)
 - Each Thruster Has a Catalyst Bed Heater
- Latch Valve Provides Leakage Tolerance and Personnel Protection
- One Pressure Transducer Provides Telemetry Data
 - Determines Propellant Usage
 - Helps Predict Thruster Performance
- Two Fill Valves for Propellant Loading and System Check-Out

Propulsion Trade Studies (1 of 2)

- Monopropellant Hydrazine System Selected for FAME
- Other Propellant Systems Considered Include:
 - Cold and Warm Gas Systems
 - Volumetrically Large and Massive for FAME Total Impulse
 - Bi-Propellant System
 - Higher Specific Impulse
 - Less Propellant Weight Than Hydrazine
 - High System Complexity
 - Two Propellant Feed Systems
 - Costly Components
 - Higher Force and Impulse Bit Thrusters Not Suitable for Precise Attitude Control
 - Electric Propulsion
 - Low Thrust Good for Precision Impulse Bit
 - High System Complexity
 - Separate Propellant Feed System
 - Separate Power System
 - Low Total Impulse Required Does Not Justify High Dry Mass

Propulsion Trade Studies (2 of 2)

- Thruster Selection
 - Multiple Vendors and Designs
 - Dedicated Spin Axis Precession (SAP) Thrusters vs. Dual Spin/SAP
- Tank Selection
 - Multiple Vendors and Designs
 - Single Tank vs. Pressurization Tank
 - Tank Geometry
 - Oblate Spheroid Desired but Has Limited Availability
 - Mounting Options
 - Elastomeric Tank Bladder vs. Metal Diaphragm
 - New Tank Design and Qualification Requires 18 Months ARO
- Buy vs. Lease SRM Support Hardware
 - Shipping Container
 - Turn-Over Stand
 - Proof and Leak Test Fixtures

Propulsion Analysis From CSR

- Launch Vehicle
 - To Determine Throw Margin
 - Evaluate FAME Injection Orbit
 - Preliminary Analysis Based on Initial Proposal Masses
 - Evaluate Injection Errors
- STAR 30BP AKM
 - Determine Margins and Offload Requirements
 - Evaluate Total Impulse and Pointing Errors
- On-Board Hydrazine System
 - Propellant Selection and System Sizing
 - Propellant Analysis
 - Margins Analysis

Apogee Kick Motor (AKM) for GEO Injection

- Thiokol STAR 30 BP Solid Rocket Motor
 - Hughes HS-376 AKM
 - > 60 STAR 30 Series Flights
 - TI 6AL-4V Case
 - Carbon-Carbon Throat With Carbon-Phenolic Nozzle
- Performance
 - Total Impulse 328,200 lb-sec
 - Average Thrust 6070 lb
 - Burn Time 55 sec
 - Effective Specific Impulse 292 sec
 - Spin Capability 40 to 100 rpm
 - Capable of 20% Propellant Offload
- Weights
 - Total Loaded 1196.7 lb
 - Propellant 113.6 lb
 - Empty Weight 72 lb
- Current Mass Estimates Indicate 10% Propellant Offload

Propellant Budget

	Prop Used
Manuever	(kg)
Initial Acquisition & Pointing	0.9
Spin-up FAME with SRM	5.1
Active Nutation Control	2.0
Despin FAME with SRM	5.1
AKM Total Impulse Error (0.5%)	3.4
Jetison SRM and Adaptor	0.1
1° AKM Pointing (i=.63°) Error Correction	0.0
Decrease Perigee by 300 km to Final GEO Orbit	1.3
Decrease Apogee by 300 km to Final GEO Orbit	1.3
N-S Station keeping (1 °/ Year)	0.0
E-W Station keeping (for ± 1° Longitude)	2.4
Spin-up for Mission	0.2
5 Yr Mission ACS (All Thruster Precession)	7.3
Raise Apogee by 300 km to deorbit	1.3
Raise perigee by 300 km Miles to deorbit	1.3
20 Mission Safe Hold Manuevers	3.4
2% Unusable Residual	2.2
25% Fuel Margin	12.6
Total	49.8

Issues (1 of 2)

- Tank Selection
 - PMD Selection Determines Delivery Schedule
 - Oblate Spheroid Shape Is Desirable
 - Reduces Spacecraft Overall Height Allowing Preferred Sun Angle Between the Sun Shield and Payload
 - Heritage Design Is Desirable
 - New Design and Qualification Are Possible but Time Consuming and Costly
- Schedule
 - Long Lead Time Procurements Are Required
 - Tank Delivery Is 18 Months ARO for New Design and Qualification
 - Thrusters Delivery Is 14 Months ARO
 - Major Procurements Required Before CDR
 - Requires Firm and Early Mission Design
 - Expedited Procurement Process Is Required
 - 180 Day Contracting Period Is Unacceptable for Tank and Thruster Procurements

Issues (2 of 2)

- Thruster Solar Precession
 - Possible Requirement for Solar Pressure Precession Backup
 - If Hydrazine Minimum Impulse Is Too High, a Small Impulse Bit Attitude Control System May Be Required
 - Cold Gas Is Possible but Must Be Fully Evaluated
 - Additional Propellant System Would Augment Hydrazine
 - Additional Costs & Effort Above Previously Quoted for CSR
 - Requirement Evaluation and Definition by Systems Requirements Review (SRR)
 - Long Lead Items Required (12 Months for the Tank)

Top Level Schedule

